skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chee, Eunice"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Platelets play a pivotal role in hemostasis and wound healing and conditional shape change is an important component of platelet functionality. In normal circumstances, platelets travel through the circulatory system in an inactive rounded state, which enables platelets to easily move to vessel walls for attachment. When an injury occurs, platelets are prompted by molecules, such as thrombin, to shift into a stellate shape and increase exposure of fibrin‐binding receptors. When active, platelets promote hemostasis and clot retraction, which enhances clot stability and promotes healing. However, in conditions where platelets are depleted or hyporeactive, these functions are diminished and lead to inhibited hemostasis and healing. To treat platelet depletion, our group developed platelet‐like particles (PLPs) which consist of highly deformable microgels coupled to fibrin binding motif. However, first generation PLPs do not exhibit wound‐triggered shape change like native platelets. Thus, the objective of these studies was to develop a PLP formulation that changes shape when prompted by thrombin. To create thrombin‐sensitive PLPs (TS‐PLPs), we incorporated a thrombin‐cleavable peptide into the microgel body and then evaluated PLP properties before and after exposure to thrombin including morphology, size, and in vitro clot retraction. Once thrombin‐prompted shape change ability was confirmed, the TS‐PLPs were tested in vivo for hemostatic ability and subsequent wound healing outcomes in a murine liver trauma model. We found that TS‐PLPs exhibit a wound‐triggered shape change, induce significant clot retraction following exposure to thrombin and promote hemostasis and healing in vivo after trauma. 
    more » « less
  2. Antibiotic drugs have revolutionized the field of medicine for almost 90 years. However, continued use has led to the rise of antibiotic resistant bacteria, motivating the need for alternative treatments. Several strategies to combat this phenomenon have been investigated, with biomimetic strategies gaining significant appeal due to inherent compatibility with physiologically relevant environments. In this review, we will discuss current antimicrobial strategies and then present an overview on biomimetic antimicrobial material-based strategies for combating antibiotic resistant bacteria. 
    more » « less
  3. Abstract Platelets crucially facilitate wound healing but can become depleted in traumatic injury or chronic wounds. Previously, our group developed injectable platelet‐like particles (PLPs) comprised of highly deformable, ultralow crosslinked pNIPAm microgels (ULCs) coupled to fibrin binding antibodies to treat post‐trauma bleeding. PLP fibrin‐binding facilitates homing to sites of injury, promotes clot formation, and, due to high particle deformability, induces clot retraction. Clot retraction augments healing by increasing clot stability, enhancing clot stiffness, and promoting cell migration into the wound bed. Because post‐traumatic healing is often complicated by infection, the objective of these studies was to develop antimicrobial nanosilver microgel composite PLPs to augment hemostasis, fight infection, and promote healing post‐trauma. A key goal was to maintain particle deformability following silver incorporation to preserve PLP‐mediated clot retraction. Clot retraction, antimicrobial activity, hemostasis after trauma, and healing after injury were evaluated via confocal microscopy, colony‐forming unit assays, a murine liver trauma model, and a murine full‐thickness injury model in the absence or presence of infection, respectively. We found that nanosilver incorporation does not affect base PLP performance while bestowing significant antimicrobial activity and enhancing infected wound healing outcomes. Therefore, Ag‐PLPs have great promise for treating hemorrhage and improving healing following trauma. 
    more » « less